- [10] a) P. Beak, J. E. Hunter, Y. M. Jun, A. P. Wallin, J. Am. Chem. Soc. 1987, 109, 5403 – 5412; b) A. Carstens, D. Hoppe, Tetrahedron 1994, 50, 6097 – 6108.
- [11] The absolute configurations of **4b** and **5** are opposite to our earlier provisional assignments.^[2a] The determination of the absolute configuration for **4b** is detailed in the supporting information.
- [12] H. J. Reich, J. P. Borst, M. B. Coplien, N. H. Phillips, J. Am. Chem. Soc. 1992, 114, 6577 – 6579.

Generation of a Silylene Complex by the 1,2-Migration of Hydrogen from Silicon to Platinum**

Gregory P. Mitchell and T. Don Tilley*

Intramolecular migrations in transition metal silicon compounds have attracted considerable attention in recent years.[1] Many of the catalytic cycles and the most interesting transformations for metal-silicon systems appear to feature such migrations, [1, 2] but discrete examples of these steps have proven difficult to observe and characterize. Silylene complexes of the type $[L_nM=SiR_2]$ are commonly featured as key intermediates in mechanistic speculations on 1,2- and 1,3migrations.^[1-3] Silylene complexes have only recently been isolated, [4] but despite great effort the formation of a silylene ligand through an intramolecular migration has not yet been observed. We recently described a reversible 1,2-hydrogen migration which interconverts cis-[(PEt₃)₂Pt(H)Si- $(StBu)_2$ [OTf] and cis-[(PEt₃)₂Pt(NCMe)SiH(StBu)₂][OTf] (Tf = SO₂CF₃), probably via an intermediate silylene complex.^[5] Here we report the first observation of a facile 1,2hydride migration which generates an observable platinum silvlene complex.

In the search for a 1,2-migration that might produce a silylene ligand, we targeted the synthesis of an alkylsilyl complex of the type [L₂PtR(SiHR'₂)]. It was thought that migration of a hydrogen atom to a platinum center to produce the alkyl hydride $[L_2Pt(R)(H)(=SiR'_2)]$ might result in elimination of alkane^[6] to produce a silylene complex of the type $[L_2Pt=SiR_2]$. Thus, the reaction of [(dippe)PtMeCl] (dippe = $iPr_2PCH_2CH_2PiPr_2$) with $[(thf)_2LiSiHMes_2]^{[7]}$ (Mes = 2,4,6-Me₃C₆H₂) in diethyl ether yielded a light brown solution, from which the platinum silyl complex [(dippe)Pt(Me)-SiHMes₂] (1) was isolated in a 79% yield as colorless crystals that were suitable for an X-ray diffraction study (Figure 1).[8] The Pt-Si distance of 2.388(3) Å is similar to that observed for cis-[(MePh₂P)₂PtMe(SiPh₃)] (2.381(2) Å),[9] and the silicon-bound hydrogen atom was located and refined at a distance of 1.36(3) Å from the silicon atom.

[*] Prof. Dr. T. D. Tilley, G. P. Mitchell Department of Chemistry University of California, Berkeley Berkeley, CA 94720–1460 (USA) Fax: (+1)510-642-8940 E-mail: tdtilley@socrates.berkeley.edu

[**] This research was supported by the National Science Foundation.

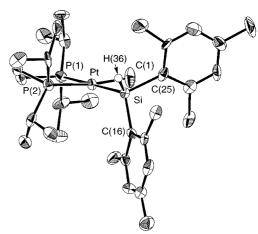


Figure 1. Molecular structure of **2**. Selected interatomic distances [Å] and angles [$^{\circ}$]: Pt – Si 2.388 (3), Pt – P(1) 2.329 (3), Pt – P(2) 2.285 (3), Pt – C(1) 2.09 (1), Si – H(36) 1.46 (3), Si – C(16) 1.93 (1), Si – C(25) 1.91 (1); P(1)-Pt-P(2) 86.1 (1), P(1)-Pt-Si 177.7 (1), P(1)-Pt-C(1) 91.0 (4), P(2)-Pt-Si 96.1 (1), P(2)-Pt-C(1) 172.0 (4), Si-Pt-C(1) 86.8 (4), Pt-Si-C(16) 119.3 (4), Pt-Si-C(25) 117.7(4).

Compound 1 is remarkably stable. Heating a solution of 1 in $[D_8]$ toluene at $110\,^{\circ}\text{C}$ for two weeks resulted in no detectable decomposition (^{1}H and ^{31}P NMR spectroscopy). Also, no reaction was observed between 1 and diphenylacetylene or 2-butyne after heating at $100\,^{\circ}\text{C}$ in $[D_8]$ toluene for three days. However, 1 does react with H_2 at $110\,^{\circ}\text{C}$ over a period of one month to give MeSi(H)Mes₂^[7] (GC/MS and ^{1}H NMR spectroscopy), presumably by reductive elimination and formation of a Si–C bond. These results suggest that a 1,2-hydrogen migration from the silicon atom to produce a five-coordinate platinum silylene species might be disfavored.

The reaction of **1** with $B(C_6F_5)_3$ in $[D_2]$ dichloromethane resulted in the rapid generation of a clear yellow solution and formation of primarily (>95%) one new compound (1H and ^{31}P NMR spectroscopy). The Si-H resonance of **1** (δ = 6.21) was replaced by a Pt-H signal at δ = -1.50 ($^1J(H,Pt)$ = 743 Hz), suggesting that a 1,2-hydride shift had taken place to generate the silylene complex $[(dippe)(H)Pt=SiMes_2]$ - $[MeB(C_6F_5)_3]$ (**2**, Scheme 1). This was confirmed by observa-

$$\begin{array}{c} \text{MeB}(C_6F_5)_3 \\ \text{Pr} \\ \text{Pt} \\ \text{Si} \\ \text{H} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{MeB}(C_6F_5)_3 \\ \text{MeB}(C_6F_5)_5 \\ \text{MeB}(C_6F$$

Scheme 1. Generation of the platinum silylene complex 2 and its conversion into 3.

tion of the ^{29}Si NMR chemical shift at $\delta=338.5$ (Figure 2), which is indicative of the presence of a three-coordinate silicon atom, $^{[4c,d]}$ and by the ^{19}F NMR spectrum, which is consistent with formation of $[\text{MeB}(C_6F_5)_3]^{-$. $^{[10]}$ The ^1H NMR spectrum of 2 also contains a broad signal at $\delta=1.37$, which is

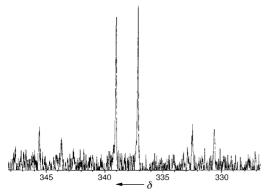


Figure 2. ²⁹Si{¹H} NMR spectrum of **2** (99.3 MHz): $\delta = 338.1$ (¹J(Si,Pt) = 1305, ²J(Si,Pt)_{trans} = 187.8 Hz; ²J(Si,P)_{cis} coupling was not observed).

assigned to the BCH₃ group. This ¹H NMR chemical shift is noticably downfield from that of free [MeB(C_6F_5)₃]⁻ ($\delta \approx 0.5$ (br) in [D₂]dichloromethane^[10, 11]), and may therefore indicate the presence of a tight ion pair. A similar downfield chemical shift ($\delta = 1.67$) for [MeB(C₆F₅)₃]⁻, was observed by Jordan and Coles for an aluminum amidinate system and was attributed to an Al···MeB(C₆F₅)₃ interaction.^[12] However, the exceptional downfield-shifted ²⁹Si NMR resonance for 2 strongly indicates that any $Si \cdots MeB(C_6F_5)_3$ interaction must be extremely weak or nonexistent. The value of ¹J(Si,Pt) for 2 (1305 Hz) is moderately smaller than the analogous value for **1** (1315 Hz), possibly reflecting the weaker σ donating ability of the 'SiMes₂ ligand relative to -SiHMes₂. However, a much larger drop in the value of ${}^{1}J(Si,Pt)$ was observed when trans-[(Cy₃P)₂(H)PtSi(SEt)₂][OTf] (1825 Hz) was converted into $trans-[(Cy_3P)_2(H)PtSi(SEt)_2][BPh_4]$ (1558 Hz). [4c] Initial attempts to isolate 2 indicate that it is an oil at room temperature. It is somewhat thermally sensitive, and decomposes at room temperature with a half-life of approximately 12 h in [D₂]dichloromethane.

As with a similar silylene complex, [4c] the reaction of **2** with *p*-dimethylaminopyridine (DMAP) generates the base-stabilized silylene complex [(dippe)(H)PtSiMes₂(DMAP)]-[MeB(C_6F_5)₃] (**3**), which was isolated in a 47% yield as a light yellow solid (Scheme 1). The ¹H NMR chemical shift of $\delta = 0.47$ ([D₂]dichloromethane) for [MeB(C_6F_5)₃]⁻ is consistent with formation of the free anion, which has presumably been completely displaced from the complex by the much more basic DMAP ligand. Not surprisingly, compound **3** is considerably more stable than **2**, and undergoes less than 10% decomposition over one week in [D₂]dichloromethane at room temperature.

Monitoring the formation of **2** at $-70\,^{\circ}\text{C}$ by ^{31}P NMR spectroscopy provided no evidence of reaction intermediates, such as the three-coordinate platinum species [(dippe)PtSiH-Mes₂][MeB(C₆F₅)₃]. Addition of H₂SiPh₂ and HClSiPh₂ to **2** resulted in the rapid formation of H₂SiMes₂ (^{1}H NMR

spectroscopy) and multiple platinum-containing products, but no products with silicon-silicon bonds were observed. Similarly, treatment of **2** with H₂ generated H₂SiMes₂ as the major species containing a mesityl group as well as several uncharacterized platinum products.

This work represents the first direct detection of a 1,2migration from silicon to a metal atom to generate an observable transition metal silvlene complex. Of particular interest is the fact that the four-coordinate platinum complex 1 is remarkably inert, while facile migration occurs when a coordination site on the metal is vacated. In reactions of square planar, four-coordinate platinum silyl complexes, therefore, it seems that α -hydrogen migration (without prior ligand dissociation) is an unlikely mechanistic step. Thus, for example, the previously observed elimination of MesSiH₃ from $[(dmpe)Pt(SiH_2Mes)_2]$ $(dmpe = Me_2PCH_2CH_2PMe_2)$, to form the "dimerized" platinum silylene complex [(dmpe)- $Pt(\mu\text{-SiHMes})_2Pt(dmpe)$], probably proceeds through oxidative addition/reductive elimination cycles rather than via the silylene intermediates [(dmpe)Pt(=SiHMes)(H)(SiH₂Mes)] and [(dmpe)Pt=SiHMes].[13]

Despite abundant circumstantial evidence, the relevance of intramolecular 1,2- and 1,3-migrations in silane polymerization, hydrosilation, and silane redistribution mechanisms is still largely a matter of speculation. Nevertheless, such migrations are viable and may even be prevalent in transformations of transition metal silicon complexes.

Experimental Section

General procedures: All reactions were carried out under nitrogen using standard Schlenk techniques. Benzene, pentane, and diethyl ether were distilled from Na/benzophenone prior to use and stored under nitrogen. Dichloromethane was distilled from CaH₂ and degassed with two freezepump-thaw cycles prior to use. The compounds [(cod)PtMeCl] (cod = 1,5-cyclooctadiene), [14] dippe, [15] [(thf)₂LiSiHMes₂], [7] and B(C₆F₃), [16] were prepared according to known prodedures. NMR spectra were recorded in [D₆]benzene at room temperature unless otherwise noted. Elemental analyses were performed by the microanalytical facility at the University of California, Berkeley. All IR samples were prepared as KBr pellets.

[(dippe)PtMeCl]: A procedure analogous to the preparation of [(dppe)PtMeCl] (dppe = 1,2-bis(diphenylphosphanyl)ethane) was used, [17] but starting from [(cod)PtMeCl] and dippe in benzene. Thus, [(dippe)PtMeCl] was crystallized from dichloromethane at $-40\,^{\circ}\text{C}$. ^{1}H NMR (400 MHz): $\delta = 0.66$ (dd, $^{3}J(\text{H,H}) = 7.2$, $^{3}J(\text{H,P}) = 14.4$ Hz, 6 H, iPr), 0.70 (m, PtMe), 0.81 (dd, $^{3}J(\text{H,H}) = 7.2$, $^{3}J(\text{H,P}) = 13.6$ Hz, 6 H, iPr), 0.92 (dd, $^{3}J(\text{H,H}) = 7.2$, $^{3}J(\text{H,P}) = 16.4$ Hz, 6 H, iPr), 1.17 (m, CH₂), 1.28 (dd, $^{3}J(\text{H,H}) = 7.2$, $^{3}J(\text{H,P}) = 15.6$ Hz, 6 H, iPr), 1.83 (m, 2 H, ^{i}Pr), 2.25 (m, 2 H, iPr); $^{31}\text{P}\{^{i}\text{H}\}$ NMR (161.98 MHz): $\delta = 63.19$ (s with ^{195}Pt satellites, $^{1}J(\text{P,Pt}) = 4013$ Hz), 72.49 (s with ^{195}Pt satellites, $^{1}J(\text{P,Pt}) = 1760$ Hz).

1: Et₂O (15 mL) was added to a mixture of [(dippe)PtMeCl] (0.411 g, 0.810 mmol) and [(thf)₂LiSiHMes₂] (0.339 g, 0.810 mmol). The mixture was stirred for 12 hours, and then the volatile compounds were removed under reduced pressure. Extraction of the residue with pentane (5 × 20 mL), followed by concentration to approximately half its volume and cooling to $-78\,^{\circ}$ C, resulted in crystallization of pure 1. Yield 79% (0.473 g). Elemental analysis calcd for C₃₃H₅₈P₂PtSi: C 53.57, H 7.90; found: C 53.23, H 8.12; m.p. 195-198 °C (decomp); ¹H NMR (400 MHz): $\delta = 0.76$ (m, 12H, *i*Pr), 0.91 (m, 12H, *i*Pr), 1.05 (dd, ³*J*(Si,P) = 9.6, ³*J*(H,P) = 6.4 Hz, PtMe), 1.13 (m, CH₂ and *i*Pr), 1.96 (m, 2 H, CH₂), 2.23 (s, 6 H, *p*-Me), 2.78 (s, 12H, *o*-Me), 6.21 (m, 1H, SiH), 6.93 (s, 4H, ArH); ¹³C[¹H} NMR (100 MHz): $\delta = 5.6$ (m, *i*Pr), 8.6 (m, *i*Pr), 13.1 (m, PtMe), 16.4 (s, Mes), 18.2 (s, Mes), 17.1 (m, CH₂), 18.2 (m, CH₂), 25.5 (m, *i*Pr), 27.4 (m, *i*Pr), 118.8 (s, Ar), 122.1 (s, Ar), 125.3 (s, Ar), 131.1 (s, Ar), 132.3 (s, Ar), 138.8 (s, Ar); ³¹P[¹H} NMR (161.98 MHz): $\delta = 66.54$ (s with ¹⁹⁵Pt satellites, ¹*J*(P,Pt) =

COMMUNICATIONS

1784 Hz), 76.00 (s with 195 Pt satellites, $^{1}J(P,Pt) = 1378 \text{ Hz}$); 29 Si $\{^{1}H\}$ NMR (99.3 MHz): $\delta = -28.70$ (dd with ¹⁹⁵Pt satellites, ¹J(P,Pt) = 1315, $^{2}J(Si,Pt)_{trans} = 192$, $^{2}J(Si,P)_{cis} = 13.3 \text{ Hz}$); IR: 2956s, 2913s, 2051 m (SiH), $1600\,\mathrm{w},\,1542\,\mathrm{w},\,1459\,\mathrm{s},\,1405\,\mathrm{m}\,\,1384\,\mathrm{w},\,1253\,\mathrm{w},\,1226\,\mathrm{w},\,1035\,\mathrm{m},\,836\,\mathrm{s},\,698\,\mathrm{m},$ 657 m, 632 m, 594 m, 549 w, 424 cm⁻¹ m.

2: A mixture of **1** (0.050 g, 0.067 mmol) and $B(C_6F_5)_3$ (0.035 g, 0.068 mmol) was dissolved in [D₂]dichloromethane (0.700 mL), generating a bright vellow solution of 2. ¹H NMR (400 MHz): $\delta = -1.50$ (dd, ${}^{2}J(H,P)_{cis} = 7.1$, $^{2}J(H,P)_{trans} = 105$, $^{1}J(H,Pt) = 743$ Hz, 1 H, PtH), 0.63 (m, 12 H, iPr), 0.85 (m, 12 H, iPr), 1.25 (m, CH₂ and iPr), 1.36 (br s, 3 H, MeB(C₆F₅)₃), 1.62 (m, 2 H, CH₂), 2.00(s, 6H, p-Me), 2.23 (s, 12H, o-Me), 6.62 (s, 4H, ArH); ${}^{31}P{}^{1}H{}$ NMR (161.98 MHz): $\delta = 77.2$ (s with ¹⁹⁵Pt satellites, ¹J(P,Pt) = 1726 Hz), 81.4 (s with ¹⁹⁵Pt satellites, ¹J(P,Pt) = 2523 Hz); ¹⁹F NMR (376.4 MHz): $\delta =$ -132.2 (brs, 2F), -165.1 (brs, 1F), -167.2 (brs, 2F); $^{29}Si\{^{1}H\}$ NMR (99.38) Mhz): $\delta = 338.1$ (d with ¹⁹⁵Pt satellites, ²J(Si,P) = 187.8, ¹J(Si,Pt) = 1305 Hz).

3: Dichloromethane (10 mL) was added to a mixture of 1 (0.300 g, 0.405 mmol) and B(C_6F_5)₃ (0.207 g, 0.405 mmol) to generate **2**. After all of the reactants had dissolved, a solution of DMAP (0.049 g, 0.405 mmol) in dichloromethane (5 mL) was added by cannula. This resulted in the immediate formation of a colorless solution. Removal of the volatile material under reduced pressure gave a light yellow oil, to which $\mathrm{Et_2O}$ (5 mL) was added. Cooling the mixture to -78 °C for 12 h resulted in precipitation of 3 as a light yellow powder. Yield 47 % (0.225 g). Elemental analysis calcd for C₅₈H₆₈BF₁₅N₂P₂PtSi: C 58.83, H 5.79; found: C 58.53, H 5.56; m.p. $105-107\,^{\circ}\text{C}$ (dec). ^{1}H NMR (400 MHz, [D₂]dichloromethane): $\delta = -3.57$ (dd with ¹⁹⁵Pt satellites, ² $J(H,P)_{cis} =$, ² $J(H,P)_{trans} = 148$, ${}^{1}J(H,Pt) = 918 \text{ Hz}, 1H, PtH), 0.47 \text{ (brs, MeB(C}_{6}F_{5})_{3}), 0.65 \text{ (m, 12H, } iPr),$ 0.94 (m, 12 H, iPr), 1.13 (m, CH₂ and iPr), 1.96 (m, 2 H, CH₂), 2.32 (s, 6 H, p-Me), 2.36 (s, 12 H, o-Me), 3.09 (s, 6 H, NMe₂), 6.56 (d, ${}^{3}J(HH) = 7.6 Hz$), 6.81 (s, 1H, ArH), 8.32 (d); ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, [D₂]dichloromethane): $\delta = 7.1$ (m, iPr), 8.2 (m, iPr), 10.1 (br s, MeBAr₃), 19.1 (s, Mes), 19.9 (s, Mes), 23.3 (m, CH₂), 28.4 (m, CH₂), 32.1 (s, NMe₂), 117.5 (s, Ar), 119.1 (s, Ar), 121.3 (s, Ar), 124.1 (s, Ar), 127.1 (s, Ar), 130.1 (s, Ar), 131.6 (s, Ar), not all of the aryl carbon atoms were observed; ³¹P{¹H} NMR (161.98 MHz, [D₂]dichloromethane): $\delta = 71.87$ (d with ¹⁹⁵Pt satellites, $^{2}J(P,P) = 3.4$, $^{1}J(P,Pt) = 2075$ Hz), 92.37 (d with ^{195}Pt satellites, $^{1}J(P,Pt) =$ $1636~Hz);~IR\colon 2971~s,~2916~s,~2072~m~(PtH),~1572~w,~1489~s,~1426~m~1401~w,$ $1319 \,\mathrm{w},\, 1251 \,\mathrm{w},\, 1092 \,\mathrm{m},\, 913 \,\mathrm{s},\, 852 \,\mathrm{m},\, 741 \,\mathrm{m},\, 695 \,\mathrm{m},\, 525 \,\mathrm{cm}^{-1} \,\mathrm{m}.$

> Received: March 24, 1998 [Z11632 IE] German version: Angew. Chem. 1998, 110, 2602-2605

Keywords: platinum \cdot silicon \cdot silylene \cdot rearrangements

- Yamashita, M. Tanaka, M. Goto, Organometallics 1992, 11, 3227; i) Y. Tanaka, H. Yamashita, M. Tanaka, Organometallics 1995, 14, 530; j) K. Tamao, G.-R. Sun, A. Kawachi, J. Am. Chem. Soc. 1995, 117, 8043.
- a) T. D. Tillev in The Silicon-Heteroatom Bond (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1991, chap 9, 10, pp. 245, 309; b) T. D. Tilley in The Chemistry of Organic Silicon Compounds (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1989, chap 24, P. 1415; c) J. Corey in Advances in Silicon Chemistry, Vol. 1 (Ed.: G. Larson), JAI, Greenwich, CT, 1991, p. 327; d) K. H. Pannell, H. K. Sharma, Chem. Rev. 1995, 95, 1351; e) C. Zybill, Top. Curr. Chem. 1991, 160, 1; f) P. D. Lickiss, Chem. Soc. Rev. 1992, 271.
- [4] Silylene complexes with sp² silicon atoms: a) D. A. Straus, S. D. Grumbine, T. D. Tilley, J. Am. Chem. Soc. 1990, 112, 7801; b) S. D. Grumbine, T. D. Tilley, A. L. Rheingold, J. Am. Chem. Soc. 1993, 115, 358; c) S. D. Grumbine, T. D. Tilley, F. P. Arnold, A. L. Rheingold, J. Am. Chem Soc. 1993, 115, 7884; d) S. K. Grumbine, T. D. Tilley, F. P. Arnold, A. L. Rheingold, J. Am. Chem. Soc. 1994, 116, 5495; e) M. Denk, R. K. Hayashi, R. West, J. Chem. Soc. Chem. Commun. 1994, 33.
- [5] G. P. Mitchell, T. D. Tilley, J. Am. Chem. Soc., in press.
- [6] J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science, Mill Valley, CA, 1987, Ch. 5.
- D. M. Roddick, R. H. Heyn, T. D. Tilley, Organometallics 1989, 8, 324.
- [8] Crystal data for 1: $C_{33}H_{57}PtP_2Si,~0.10\times0.15\times0.10$ mm, tetragonal, space group $P2_1c$, a = 22.0264 (3), c = 14.2660 (2) Å, V = 6947.3 (1) Å³, Z=8; $\mu(Mo_{Ka})=41.69 \text{ cm}^{-1}$, T=158 K. Of 28993 data collected $(2\theta < 46.5^{\circ})$, 3551 were independent and used in the refinement of 334 variables. The data were corrected for Lorentz and polarization effects, but no absorption correction was applied. All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were treated as idealized contributions, except H(36), which was located and refined isotropically . R(F) = 0.029; R(wF) =0.029. Max./min. peaks in final difference map: $0.55/ - 0.57 e^{-} Å^{-3}$. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-102839. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
- [9] F. Ozawa, T. Hikida, T. Hayashi, J. Am. Chem. Soc. 1994, 116, 2844.
- [10] X. Yang, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1994, 116, 10015.
- [11] C. L. Gillis, M-J. Tudoret, M. C. Baird, J. Am. Chem. Soc. 1993, 115,
- [12] M. P. Coles, R. F. Jordan, J. Am. Chem. Soc. 1997, 119, 8125.
- [13] a) R. H. Heyn, T. D. Tilley, J. Am. Chem. Soc. 1992, 114, 1917; b) R. H. Heyn, Dissertation, University of California, San Diego (USA), 1992.
- [14] H. C. Clark, L. E. Manzer, J. Organomet. Chem. 1973, 59, 411.
- [15] a) M. D. Fryzuk, T. Jones, F. W. B. Einstein, Organometallics, 1984, 3, 185; b) R. J. Burt, J. Chatt, W. Hussain, G. J. Leigh, J. Organomet. Chem. 1979, 182, 203.
- [16] A. G. Massey, A. J. Park, J. Organomet. Chem. 1964, 2, 245.
- [17] T. G. Appleton, M. A. Bennett, I. B. Tomkins, J. Chem. Soc. Dalton Trans. 1976, 439.

^[1] a) K. H. Pannell, J. Cervantes, C. Hernandez, J. Cassias, S. Vincenti, Organometallics 1986, 5, 1056; b) K. H. Pannell, J. M. Rozell Jr., C. Hernandez, J. Am. Chem. Soc. 1989, 111, 4482; c) K. H. Pannell, L.-J. Wang, J. M. Rozell, Organometallics 1989, 8, 550; d) K. H. Pannell, H. Sharma, Organometallics 1991, 10, 954; e) K. L. Jones, K. H. Pannell, J. Am. Chem. Soc. 1993, 115, 11336; f) C. Hernandez, H. K. Sharma, K. H. Pannell, J. Organomet. Chem. 1993, 462, 259; g) K. H. Pannell, M.-C. Brun, H. Sharma, K. Jones, S. Sharma, Organometallics 1994, 13, 1075; h) H. Tobita, K. Ueno, H. Ogino, Bull Chem. Soc. Jpn. 1988, 61, 2797; i) K. Ueno, H. Tobita, H. Ogino, Chem. Lett. 1990, 369; j) K. Ueno, K. Kakano, H. Ogino, Chem. Lett. 1996, 459; k) M. Okazaki, H. Tobita, H. Ogino, J. Chem. Soc. Dalton Trans. 1997, 3531; l) A. Haynes, M. W. George, M. T. Haward, M. Poliakoff, J. J. Turner, N. M. Boag, M. Green, J. Am. Chem. Soc. 1991, 113, 2011; m) S. Nlate, E. Herdtweck, R. A. Fischer, Angew. Chem. 1996, 108, 1957; Angew. Chem. Int. Ed. Engl. 1996, 35, 1861; n) D. C. Pestana, T. S. Koloski, D. H. Berry, Organometallics 1994, 13, 4173.

^[2] a) M. D. Curtis, P. S. Epstein, Adv. Organomet. Chem. 1981, 19, 213; b) T. Kobayashi, T. Hayahi, H. Yamahita, M. Tanaka, Chem. Let. 1988, 1411; c) T. D. Tilley, Comments Inorg. Chem. 1990, 10, 37; d) M. Ishikawa, H. Sakamoto, F. Kanetani, Organometallics 1989, 8, 2767; e) J. A. Reichl, C. M. Popoff, L. A. Gallagher, E. E. Remsen, D. H. Berry, J. Am. Chem. Soc. 1996, 118, 9430; f) W. S. Palmer, K. A. Woerpel, Organometallics 1997, 16, 4824; g) D. Seyferth, M. L. Shannon, S. C. Vick, T. F. O. Lim, Organometallics 1985, 4, 57; h) H.